ANALYSE BIOMECANIQUE :
Vêtement de travail supplétif pour manutentionnaire
Pour la société SIDECT par i-trema
2014

Oxydium Concept Bat.A, 190 rue marcelle isoard 13090 Aix en Provence
Siret : 75172248900018
X. d'Oléac 0676096735 / A.Fournier 0686413802 / contact-formation@i-trema.fr
Recherche Evaluation du Mouvement ; i-trema.fr
Préambule

SIDECT et I-trema, deux sociétés indépendantes, se sont rencontrées par le biais de connaissances communes.

Leur souhait commun de pouvoir soulager les contraintes des opérateurs lors de tâches de manutention les a fait travailler ensemble sur ce projet novateur et prometteur.

I-trema s’est donc intéressé aux produits créés par SIDECT. Ce document nous permet d’objectiver les intérêts du système CORFOR.

Nous présentons ici les résultats des analyses de données recueillies lors d’ateliers se rapprochant des tâches auxquelles sont régulièrement confrontés les opérateurs travaillant dans les domaines de l’agriculture, de la maçonnerie et de la manutention.

Vous pourrez y apprécier nos interprétations et nos conclusions.

Bonne lecture.
Sommaire

1. Présentation de la société I-trema

2. Analyse Angulaire

3. Analyse Bras de levier et Vecteurs force

4. Analyse Dynamométrique

5. Analyse cinématique angulaire et cinématique de trigger

6. Analyse Electromyographique

Conclusions

Conclusion générale
1. Présentation de la société I-trema

Istitut de Thérapie manuelle, Recherche et Evaluation du Mouvement d’Aix en Provence

Société indépendante.

3 domaines d’activité au sein de cette société :

- Formation pour les kinésithérapeutes,
- Recherche dans le mouvement sportif,
- Audit biomécanique et ergonomie.

Intervenants :

- Xavier d’Oléac : DU d’analyse de la posture et du mouvement, Kinésithérapeute libéral, Thérapeute Manuel, formé en ergonomie, enseignant i-trema et ITMP.
- Anthony Fournier : Kinésithérapeute libéral, Thérapeute Manuel, formé en ergonomie, enseignant i-trema et ITMP.

Equipement pour prise de données :

Système CAPTIV de TEA développé en collaboration avec l’INRS.

- Capteur dynamométrique, fréquence 32Hz précision +/- 0,1%
- Capteurs sEMG, échantillonnage 2048Hz ; RMS 128Hz
- Capteurs de pression
- Capteurs de mouvement tridimensionnel
- Appareil multi fonction : Cardiofréquencemétrie, Capteur GPS, Allure, vitesse…
- Vidéo haute fréquence
- Logiciel de traitement dynamique
Ci-dessus : Figure 2A : Port de 20kg arrachés au sol sans système

Ci-dessus Figure 2B: Port de 20 Kg arrachés au sol avec habit de travail
2. Analyse angulaire

Récapitulatif des mesures angulaires et conversion en mesures anatomiques :

Figure 2A :

Angulation genou : 128° => flexion anatomique de genou = 52° (180°-128°)

Angulation Hanche : 75° => 105° de flexion anatomique de hanche (180-105)

Angulation Charnière Thoraco Lombaire CTL : 106° => 74° de flexion anatomique (180-106)

Angulation Charnière Cervico Dorsale (CCD) : 126° (= 54° d’extension anatomique CCD)

Figure 2B :

Angulation genou : 96° (flexion anatomique de genou = 83° (180°-96°)

Angulation Hanche : 50° (= 130° de flexion anatomique) ;

Angulation Charnière Thoraco Lombaire CTL : 132 (= 48° de flexion anatomique) ;

Angulation Charnière Cervico Dorsale (CCD) : 151°- (180-151 = 29° d’extension anatomique)

<table>
<thead>
<tr>
<th>Flexion / Extension Anatomique</th>
<th>Figure 2A</th>
<th>Figure 2B</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genou</td>
<td>52 F°</td>
<td>83 F°</td>
<td>+ 31°</td>
</tr>
<tr>
<td>Hanche</td>
<td>105 F°</td>
<td>130 ° F</td>
<td>+ 25°</td>
</tr>
<tr>
<td>CTL</td>
<td>74 F°</td>
<td>48 F°</td>
<td>- 26°</td>
</tr>
<tr>
<td>CCD</td>
<td>54 ° Ext</td>
<td>29° ext</td>
<td>- 25°</td>
</tr>
</tbody>
</table>

Tableau 2 A : Récapitulatif des mesures et variations

Commentaires des relevés d’angulations :

Observations :

Pour cette tâche, les angulations anatomiques relevées et inscrites au tableau 2A permettent d’objectiver de manière catégorique une augmentation des valeurs de flexion de hanche (+25) et de genou (+31) au dépend des angulations d’extension de la charnière cervico dorsale CCD (-25) et de l’angulation de flexion de la charnière thoraco lombaire CTL (-26)°.
Figure 2 C : Posture à l'arraché du sol Sans Système

Figure 2D : Posture à l'arraché du sol avec Habit de travail
Interprétation :

D'un point de vue ergonomique, la diminution de flexion dans la CTL lors d'un port de charge lourde est intéressante. Nachemson avait en effet réalisé une étude sur l'augmentation de pression au sein des disques intervertébraux (DIV) lors de port de charge lourde en flexion. Ses résultats étaient sans appel. La flexion des lombaires et les contraintes liées à la charge étaient néfastes pour les disques intervertébraux. Les médecins et kinésithérapeutes savent que cela engendre à terme des hernies discales par usure des fibres postérieures du DIV.

Au sein de la CCD, les résultats montrent que l'hyper extension de cette zone est limitée par l'usage du système. Les processus articulaires postérieurs des étages cervicaux et D1 D2 en seront d'autant plus préservés, le système va dans le sens de la prévention de pathologies de cette région anatomique telles que la survenue d'arthrose.

Lors de la tâche étudiée, la flexion de genou est augmentée par le système + 31°, nous approchons les 90° de flexion du principal appareil extenseur du membre inférieur. Cette constatation est en accord avec les recommandations des gestes et postures et n'est compatible qu'avec des genoux permettant ce niveau de flexion.

De même la flexion de hanche à un delta positif de 25°, nous passons de 105 à 130°, ceci n’a que très peu de conséquences sur cette articulation portante et très congruente.

Conclusions :

L'utilisation de ce système pour le port de charges lourdes prises à même le sol est avantageuse pour l'économie de contraintes sur les régions anatomiques de l'opérateur telles que la charnière Thoraco lombaire et la charnière cervico dorsale. Le Genou est une articulation mise à contribution, ceci va dans le sens des recommandations des gestes et postures mais nécessite des genoux « sains ».

Posture Globale du sujet, (Figures 2 A, B, C et D) : Commentaires

La figure 2 C nous montre un sujet avec un rachis présentant une cyphose globale marquée (l’ellipse y figurant témoigne de l’enroulement.

Les membres supérieurs tombent quasiment à la verticale (l’angle verticale et membre supérieur est de 3°), ceci laisse supposer une sagittalisation des omoplates et une mise en course externe des trapèzes inférieurs et moyen et du grand dorsal.

La figure 2D nous montre un angle entre la verticale et le membre supérieur de 10° soit + 7° de variation. L’élastique de l’habit supplétif (caractérisée en vert sur cette photo) contraint l’opérateur à placer ses membres supérieurs en arrière de l’articulation gléno humérale. Les muscles fixateurs d’omoplates tels que le trapèze moyen et inférieur et rhomboïdes ne sont plus en position de subir la posture car ne sont plus en course externe. Nous noterons au passage l’aspect de placage de l’élastique du vêtement sur la région thoraco lombaire, venant diminuer la grande cyphose vue dans la figure 2C.
Figures 2F : Positionnement des omoplates sans élastique 54°.

Figure 2G : Positionnement des omoplates avec élastique ; 32°
Cette cyphose diminuée de manière nette met les muscles du rachis et des épaules en position d’efficacité plus grande par un positionnement de leurs fibres en course moyenne. (Le positionnement d’un muscle en course externe le rend moins efficace car dans ce cas, il est mis en contrainte sur ses structures passives tendineuses et fasciales comme lors d’un étirement). On pourra citer parmi ces muscles, le trapèze inférieur et moyen, le grand dorsal, les rhomboïdes, les petits dentelés postéro supérieurs...)

Positionnement des omoplates Avec élastique et Sans élastique

D’après la comparaison des photos 2G et 2F, il apparaît que les omoplates sont moins sagittalisées par rapport au plan anatomique avec un rappel élastique mimant l’habit supplétif. Nous avons une diminution de 20° pour chaque épaule.

Conséquences physiologiques :

La sagittalisation des omoplates est un facteur délétère à long terme pour l’état de la coiffe des rotateurs.

En effet une sagittalisation d’omoplate induit un mauvais positionnement de la tête humérale (bien souvent positionnée en antérieur puis s’ensuit plus tard une diminution de l’espace sous acromial provocant à terme des lésions fréquentes du muscle supra épineux (tendinopathie en premier temps ou fissuration voire ruptures tendineuses dans les cas plus complexes.)

Conclusion :

La diminution de la sagittalisation de l’omoplate par l’utilisation d’une élastique est un est facteur de prévention des risques de pathologie d’épaule (conflits supérieurs d’épaule ; l’usure prématurée de la coiffe des rotateurs et omarthrose...). C’est ce que réalise l’habit de travail.
Figure 3 A

Figure 3B
3. Analyse Bras de levier et Vecteurs force

Analyse bras de levier :

Présentation du levier de troisième genre:

Nous sommes en présence d’un levier de troisième genre où la force nécessaire à soulever la charge se situe entre le pivot et la charge. Dans ce type de bras de levier, la force à appliquer pour soulever la charge est supérieure à la résistance de la charge. On est en situation de désavantage mécanique pour la force.

Tout système qui permettra de diminuer l’éloignement (ou diminuer le bras de levier) de la charge du pivot du levier permettra d’alléger la force nécessaire à soulever la charge. (Figure 3A)

Analyse Figure 3A 3B

En comparant la figure 3 A à la 3B, voici ce que nous analysons :

En considérant l’ensemble rachis bassin, le port de la veste fait diminuer le bras de levier. (L’aplomb de la charge est plus proche du pivot, le décalage vers l’axe du pivot est caractérisé par une flèche verte horizontale au sein de la figure 2B). L’application de la force de résistance se réalise plus près du pivot du levier.

La force nécessaire à soulever la charge sera donc allégée.

Dans cet ensemble, cette force se concentre dans la région des muscles spinaux lombaires et fessiers.

D’autre part la qualité du mouvement est meilleure tout comme la qualité de contraction musculaire car on a vu précédemment dans l’analyse angulaire que le sujet diminuait sa cyphose globale avec l’habit de travail. (Et cf EMG)
Figure 3C

Figures 3 D à gauche et 3 E à droite
Analyse des Vecteurs:

Dans la figure 3B, nous avons vu que le port de la charge était décalé vers le pivot du levier de force.

Dans le port de la charge sans habit de travail, une seule force de Réaction notée R est présente pour contrecarrer le poids noté P.

Lors du port avec habit de travail, pour contrecarrer le vecteur P, R est décomposée en deux vecteurs, le vecteur Force veste et le vecteur Force Membre supérieur dont les directions sont déterminées selon des angles apparaissant spontanément à l'image.

La direction du vecteur force Veste est dirigé vers le haut et vers la droite avec un angle de 12° par rapport à la verticale. La direction du vecteur force Membre Supérieur est dirigée vers le haut et vers la gauche avec un angle de 4,5° par rapport à la verticale.

L’habit de travail crée une force de rappel vers la Zone Thoraco lombaire, ce qui permet de diminuer le bras de levier et de reporter des contraintes mécaniques vers cette zone on le voit notamment par la tension du système élastique intégré à la veste sur la charnière thoraco lombaire et autour.

On soulage ainsi l'opérateur de tensions au niveau de la ceinture scapulaire et du rachis dorsal supérieur.
Tension de sangle avec masse portée

Tension de la sangle par triceps

Figure 4 A

Figure 4 B

Figure 4 C

Figure 4 D

222 N

102 N

120 N
4. Analyse dynamométrique

Le but de cette analyse est de connaître la force emmagasinée par la sangle et retransmise au tronc par le vêtement.

Technique de mesure : une jauge dynamométrique est interposée entre la sangle et son attache sur le vêtement. (cf figure 4A)

Données pour le calcul : (cf figure 4B)
- Masse sangle + système dynamométrique = 2 N (Newton)
- Masse du bras = 11 N
- Force déployée pour tendre l’élastique par les triceps est de 120N.
- Tension de la sangle par le triceps droit, par exemple : 60 N (6 kg)

Analyse des valeurs

Sachant que la masse est de 20kg, chaque bras prend à sa charge 100N. La masse du bras est de 11N. Lors du port de charge de 200N, l’élastique prend à sa charge 120N.

⇒ La masse restante à la charge de chaque membre supérieur, lors de la tension maximale (arrachée de la masse du sol) est de :
⇒ 100N – 60N +11N = 51N soit 5,1 kg

Le reste de la charge est absorbée par l’élastique et transmise au tronc sur un point d’attache plus proche du pivot du levier, diminuant ainsi le bras de levier de celle-ci.

La force de réponse nécessaire que le sujet doit fournir sera donc plus faible.
(cf figures 4 Cet 4D)

Les résultats correspondent bien à l’impression subjective de perception du poids. En effet le sujet quantifie la masse de l’objet à 10kg au lieu de 20 kg
5 A : Comparatif avec et sans lors de l’arrachée de la masse au sol

5 B : Comparatif avec et sans lors de la dépose de la masse au sol
5. Analyse cinématique angulaire et cinématique de trigger

Ces analyses correspondent aux vidéos remises sur clef USB.

Nous utilisons pour cette étude une caméra vidéo haute fréquence (240 img/s) ainsi que des logiciels de traitement d'image dynamique.

Nous avons placés des points (triggers) sur l'opérateur qui, par traitement informatique, peuvent être animés sur le sujet. Les biais de traitement sont ainsi diminués.

Une fois les triggers verrouillés par notre logiciel, ceux-ci nous permettent d'obtenir des images et tables de calcul. Cela nous permet de connaître l'amplitude et la vitesse de déplacement de ce point défini et de comparer les gestes réalisés avec et sans le vêtement en temps réel.

Analyse cinématique de trigger en vue sagitale

Nous avons étudiés différents points :

Epaule / Bassin / Condyle externe du genou.

Analyse avec versus sans:

Epaule : Avec, l'épaule reste au dessus d'une ligne horizontale passant par le bassin.

Bassin : Avec, diminution du recul du bassin et augmentation de son abaissement.

Genou : Avec, Abaissement du condyle.

Conclusions de l'utilisation du vêtement supplétif :

Abaissement spontané du bassin par le porteur de la veste.

Augmentation des flexions de cheville genou et hanche.

Ceci permet ainsi un placement prophylaxique du rachis préparant ainsi le port de charge.
Figure 5C

Figure 5D : comparatif sans et avec ‘vêtement’ (rappel élastique)

Figure 5 E : Comparatif sans et avec vêtement
Analyse cinématique en vue frontale :

L'élastique placé sur les membres supérieurs imite l'effet du vêtement supplétif.

Nous apercevons en vue frontale, un abaissement du bassin par rapport aux épaules pour une même charge.

L'élastique limite l'enroulement des épaules et des omoplates comme vu précédemment, incite le porteur du vêtement à abaisser son bassin pour abaisser son centre de gravité et lui permettre ainsi de saisir l'objet.

L'impact de cet abaissement aux différents étages :

- Genou et cheville : Augmentation des flexions, restant dans une amplitude de confort.
- Placement des omoplates : diminution de la sagitalisation (cf page13 et 14).
- Cervical : diminution de l'extension cervicale (impact positif en prévention)
- Dorsal : diminution de la cyphose (enroulement en flexion)
- Lombaire : Diminution de la flexion

La position cervicale lors de la figure 5D sans vêtement, est une flexion du rachis cervical bas et une extension du rachis cervical haut. Cette position permet d'avoir le regard sur l'objet à saisir.

L’effet sur le rachis cervical du vêtement est de corrigir la posture et limiter les amplitudes. Ceci correspond aux recommandations pour la prévention des troubles du rachis cervical et des douleurs cervico thoraciques.

Effet positif de la flexion des membres inférieurs sur la posture rachidienne.
Figure 5F : Comparatif sans et avec vêtement de l’angle tronc / cuisse

Figure 5G : Comparatif sans et avec vêtement de l’angle de flexion du membre inférieur
Analyse cinématique angulaire

Analyse de l’angle tronc cuisse : figure 5F

Augmentation de l’angle tronc cuisse qui met en évidence lors du port du vêtement la diminution de l’enroulement du tronc.

Ainsi la position de cyphose (appelé flexion), mettant en danger les disques intervertébraux (risque de hernie), est diminuée.

Analyse de la flexion de genou : figure 5G

Les flexions de tronc et de genou sont amorties dans le mouvement plus rapidement dans le temps.

Ceci indique que lors du mouvement, le sujet ne prend pas de temps à enrouler les lombaires et il se sert aussitôt de ses pivots de rotation.

Absence de flexion lors de la descente donc absence de retour de flexion en concentrique avec port de charge période à risque pour les disques intervertébraux.

Conclusion cinématique angulaire

Cet habit transforme le tronc en un « seul segment » protégé par le contrôle musculaire. On comparera le vêtement à un système de rappel extéroceptif.

L’effet indésirable du tronc mobilisé ainsi en un seul segment, est la diminution des mouvements de postures fins. Ceci peut altérer la précision des gestes de l’opérateur.
Figure 6 A levée du sol d'une masse sans vêtement

Figure 6 B levée du sol d'une masse avec vêtement
7. Analyse électromyographique

L’objectif de cette analyse est de quantifier l’activité électrique du muscle lors du mouvement.

Elle est couplée à la vidéo pour comparer activité muscle / activité de l’opérateur.

Les électrodes d’EMG de surface sont positionnées selon la recommandation de la SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles), issu d’un projet de l’Union Européenne (European concerted action in the Biomedical Health and Research Program (BIOMED II)).

ROUGE : sEMG lombaire : Erector spinae (lumbar region)

VERT : sEMG Quadriceps: Vaste externe

Analyse Atelier Levée masse du sol

L’atelier consiste à lever une masse de 20kg du sol.

Nous avons choisi un objet à ramasser au ras du sol, ce qui représente la réalité du terrain des manutentionnaires et qui est le mouvement le plus risqué pour ceux-ci.

Le manutentionnaire doit se baisser pour ramasser l’objet et se relever.

Nous décomposerons en 3 phases :

1 descente à l’objet / 2 arrachée du sol / 3 retour à la position érigée avec l’objet

La phase la plus risquée est la 2 car la contraction musculaire doit être maximale pour arracher la masse du sol. Les vertèbres sont en flexion dans leur amplitude maximale, soit en position à risque.

Analyse des courbes :

Phase 1: Avec le vêtement nous apercevons une activité électrique des spinaux tout au long du mouvement contrairement à sans.

Phase 2 : Hyper signal d’activité électrique du quadriceps laissant penser à un plus fort recrutement des fibres musculaire (donc plus grande force).

Phase 3 : Moins d’activité électrique des spinaux lors de cette phase avec le vêtement. Ceci laisse penser à un plus faible recrutement des fibres musculaire, par la nécessité d’une force nécessaire plus faible. Plus grande période d’activité du quadriceps car le mouvement au sein de l’articulation du genou est plus ample.
Figure 6 C : Pose au sol d’une masse sans vêtement

Figure 6 D : Pose au sol d’une masse avec vêtement
Analyse atelier dépose d'une masse du sol

L’atelier consiste à déposer une masse de 20kg du sol.

Nous avons choisi un objet à déposer au ras du sol qui représente la réalité du terrain des manutentionnaires et qui est le plus risqué par l’amplitude nécessaire.

Le manutentionnaire doit se baisser pour déposer l’objet et se relever.

Nous décomposerons en 3 phases :

1. descente avec l’objet / 2. lâcher au sol / 3. retour à la position érigée avec l’objet

Analyse des courbes

Phase 2 : Activité musculaires des spinaux tout au long du mouvement. Activité électrique du quadriiceps augmentée par recrutement des fibres musculaires

Phase 3 : Activité musculaires des spinaux présente tout au long du mouvement. Activité électrique du quadriiceps augmentée par recrutement des fibres musculaires

Conclusion analyse électromyographique :

Plus forte activité électrique des muscles spinaux lombaires durant l’ensemble des mouvements de descente et retour avec et sans charge. Ceci objective la protection active du rachis par ses muscles érecteurs.

- Plus forte activité électrique quantitative et temporelle pour le quadriiceps, objectivant ainsi l’augmentation d’amplitude de flexion de genou.

- L’ensemble des activités musculaires électromyographiques, est en corrélation avec l’analyse angulaire cinématique et met en relief les points suivants :
 > Pas d’enroulement précoce du dos et des épaules lors de l’amorce la descente.
 > Activation des muscles spinaux conservant le dos en position physiologique de lordose.
Conclusions

Nous citons ci après les effets physiologiques et posturaux du port du vêtement de travail supplétif de la société SIDECT:

Analyse angulaire :
- Augmentation de la flexion de genou et hanche, diminution de la flexion des vertèbres thoraciques et lombaires. Diminution de l’extension des vertèbres cervicales. Le vêtement place le sujet dans des amplitudes articulaires de confort protégeant ainsi les structures passives du tronc qu’elles soient musculaires, ligamentaires ou discales ou fasciales.

- Protection des épaules en plaçant les omoplates dans un secteur angulaire de prévention des conflits de coiffe des rotateurs et d’économie des muscles de l’épaule.

Analyse du bras de leviers et des vecteurs
- Diminution de la force active nécessaire par la diminution du bras de levier. Donc diminution potentielle de la fatigue musculaire.

- Soulagement des structures anatomiques de la ceinture scapulaire et rachis dorsal supérieur.

- Transfert de force du vecteur force ‘membre supérieur’ au profit du vecteur force ‘élastique’.

Analyse dynamométrique
- Diminution de la masse portée par le membre supérieur et report d’une partie de la masse (dépendant de la tension de l’élastique) vers les lombaires.

- Au total le bras de levier est diminué par l’attache thoraco brachiale de l’élastique sur la veste.

Analyse cinématique de trigger cf Vidéo
- Spontanément le porteur de la veste abaisse son bassin, le plaçant ainsi dans une position qui protègera son dos lors du port de la charge.

Analyse cinématique angulaire (cf vidéo)
Augmentation de l’angle tronc/cuisse qui met en évidence, lors du port du vêtement, la diminution de l’enroulement du tronc. Ainsi la position de cyphose (appelé flexion), mettant en danger les disques intervertébraux (risque de hernie), est diminuée.
Cet habit transforme le tronc en un « seul segment » protégé par le contrôle musculaire. On le comparera à un système de rappel extéroceptif.

Le tronc mobilisé ainsi en un seul segment peut diminuer les mouvements de postures fins. Ceci peut altérer la précision des gestes de l’opérateur.

Analyse électromyographique

- Plus forte activité électrique des muscles spinaux lombaires durant l’ensemble des mouvements de descente et retour avec et sans charge. Ceci objective la protection active du rachis par ses muscles érecteurs.

- Plus forte activité électrique quantitative et temporelle pour le quadriceps, objectivant ainsi l’augmentation d’amplitude de flexion de genou.

- L’ensemble des activités musculaires électromyographiques, est en corrélation avec l’analyse angulaire cinématique et met en relief les points suivants :

 Pas d’enroulement précoce du dos et des épaules lors de l’amorce la descente.

 Activation des muscles spinaux conservant le dos en position physiologique de lordose.
CONCLUSION GENERALE

Ce système permet d’orienter l’opérateur équipé vers un geste ergonomique conseillé.

Ce système permet de diminuer les contraintes sur les épaules et l’ensemble du tronc.

L’utilisation accrue des membres inférieurs en force et en amplitude est positif sur la posture mais nécessite des membres inférieurs sains.

Ce système nécessite un apprentissage pour son utilisation pour diminuer l’effet « perte de précision » sur un geste postural fin.

La guidance du mouvement n’étant pas forcée par le système mais incitée, ceci ne doit pas remplacer à notre avis une formation aux gestes et postures.

Nous n’avons pas travaillé dans ce dossier sur cette thèse, mais il serait intéressant de savoir si la position adoptée est naturellement induite par le vêtement ou alors le vêtement agit-il comme rappel des bons gestes et postures (puisant dans les connaissances acquises par l’opérateur) ?

Cet habit de travail suppléatif aurait il un impact de rappel des formations gestes et postures à plus long terme au moment où l’opérateur « oublie » sur le terrain ce qui lui est conseillé.

En tout état de cause, en respectant les règles d’utilisation et le port du produit aux dimensions conseillées par le fabricant, notre organisme i-trema est à même de recommander l’utilisation de ce système suppléatif pour des personnes exposées à des tâches de manutention.